首页> 外文OA文献 >Testing for white noise under unknown dependence and its applications to goodness-of-fit for time series models
【2h】

Testing for white noise under unknown dependence and its applications to goodness-of-fit for time series models

机译:未知依赖性下的白噪声测试及其应用   适合时间序列模型的优点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Testing for white noise has been well studied in the literature ofeconometrics and statistics. For most of the proposed test statistics, such asthe well-known Box-Pierce's test statistic with fixed lag truncation number,the asymptotic null distributions are obtained under independent andidentically distributed assumptions and may not be valid for the dependentwhite noise. Due to recent popularity of conditional heteroscedastic models(e.g., GARCH models), which imply nonlinear dependence with zeroautocorrelation, there is a need to understand the asymptotic properties of theexisting test statistics under unknown dependence. In this paper, we showedthat the asymptotic null distribution of Box-Pierce's test statistic withgeneral weights still holds under unknown weak dependence so long as the lagtruncation number grows at an appropriate rate with increasing sample size.Further applications to diagnostic checking of the ARMA and FARIMA models withdependent white noise errors are also addressed. Our results go beyond earlierones by allowing non-Gaussian and conditional heteroscedastic errors in theARMA and FARIMA models and provide theoretical support for some empiricalfindings reported in the literature.
机译:计量经济学和统计学文献已经对白噪声的测试进行了深入研究。对于大多数建议的检验统计量,例如众所周知的具有固定滞后截断数的Box-Pierce检验统计量,渐近零分布是在独立且均匀分布的假设下获得的,可能对相关的白噪声无效。由于条件异方差模型(例如GARCH模型)最近流行起来,这意味着具有零自相关的非线性依赖关系,因此有必要了解未知依赖关系下现有测试统计量的渐近性质。在本文中,我们证明了Box-Pierce的检验统计量具有一般权重的渐近零分布在未知弱依赖项下仍然保持不变,只要larunruncation数量随样本量的增加以适当的速率增长。具有白噪声误差的模型也得到了解决。通过允许ARMA和FARIMA模型中的非高斯和有条件的异方差误差,我们的结果超越了以往,并为文献中报道的一些经验发现提供了理论支持。

著录项

  • 作者

    Shao, Xiaofeng;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号